tnpy.model.Thirring
5.1. tnpy.model.Thirring#
- class tnpy.model.Thirring(n, delta, ma, penalty, s_target)[source]#
Bases:
tnpy.model.model_1d.Model1D
The Hamiltonian
\[H = -\frac{1}{2} \sum_{n=0}^{N-1}(S_n^+ S_{n+1}^- + S_{n+1}^+ S_n^-) + \tilde{m}_0 a \sum_{n=0}^{N-1} (-1)^n \left(S_n^z + \frac{1}{2}\right) + \Delta(g) \sum_{n=0}^{N-1} \left(S_n^z + \frac{1}{2}\right) \left(S_{n+1}^z + \frac{1}{2}\right)\]If the penalty strength \(\lambda \neq 0\), a penalty term will be taken into account
\[H \rightarrow H + \lambda \left(\sum_{n=0}^{N-1} S_n^z - S_{target}\right)^2\]- Parameters
n (int) – System size.
delta (float) – Wavefunction-renormalized bare coupling, Delta(g).
ma (float) – Wavefunction-renormalized bare mass.
penalty (float) – Penalty strength (of Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
- Return type
None
- __init__(n, delta, ma, penalty, s_target)[source]#
The Hamiltonian
\[H = -\frac{1}{2} \sum_{n=0}^{N-1}(S_n^+ S_{n+1}^- + S_{n+1}^+ S_n^-) + \tilde{m}_0 a \sum_{n=0}^{N-1} (-1)^n \left(S_n^z + \frac{1}{2}\right) + \Delta(g) \sum_{n=0}^{N-1} \left(S_n^z + \frac{1}{2}\right) \left(S_{n+1}^z + \frac{1}{2}\right)\]If the penalty strength \(\lambda \neq 0\), a penalty term will be taken into account
\[H \rightarrow H + \lambda \left(\sum_{n=0}^{N-1} S_n^z - S_{target}\right)^2\]- Parameters
n (int) – System size.
delta (float) – Wavefunction-renormalized bare coupling, Delta(g).
ma (float) – Wavefunction-renormalized bare mass.
penalty (float) – Penalty strength (of Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
- Return type
None
Methods
__init__
(n, delta, ma, penalty, s_target)The Hamiltonian
Attributes
mpo
Return matrix product operator (mpo) as a property of the model.
n
- __init__(n, delta, ma, penalty, s_target)[source]#
The Hamiltonian
\[H = -\frac{1}{2} \sum_{n=0}^{N-1}(S_n^+ S_{n+1}^- + S_{n+1}^+ S_n^-) + \tilde{m}_0 a \sum_{n=0}^{N-1} (-1)^n \left(S_n^z + \frac{1}{2}\right) + \Delta(g) \sum_{n=0}^{N-1} \left(S_n^z + \frac{1}{2}\right) \left(S_{n+1}^z + \frac{1}{2}\right)\]If the penalty strength \(\lambda \neq 0\), a penalty term will be taken into account
\[H \rightarrow H + \lambda \left(\sum_{n=0}^{N-1} S_n^z - S_{target}\right)^2\]- Parameters
n (int) – System size.
delta (float) – Wavefunction-renormalized bare coupling, Delta(g).
ma (float) – Wavefunction-renormalized bare mass.
penalty (float) – Penalty strength (of Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
- Return type
None