tnpy.tsdrg.ShiftInvertTreeTensorNetworkSDRG
4.6. tnpy.tsdrg.ShiftInvertTreeTensorNetworkSDRG#
- class tnpy.tsdrg.ShiftInvertTreeTensorNetworkSDRG(mpo, chi, offset)[source]#
Bases:
tnpy.tsdrg.TreeTensorNetworkSDRGThe tree tensor network version of strong disorder renormalization group algorithm.
- Parameters
mpo (MatrixProductOperator) – The matrix product operator.
chi (int) – The truncation dimensions.
offset (float) –
Examples
The tSDRG algorithm can be launched by calling
run()method.>>> tsdrg = TreeTensorNetworkSDRG(mpo, chi=32) >>> tsdrg.run()
After executing
run(), one can access the binary tensor treeTensorTreethrough the attributetree. For measurements, please refer tomeasurementsorTreeTensorNetworkMeasurements.- __init__(mpo, chi, offset)[source]#
The tree tensor network version of strong disorder renormalization group algorithm.
- Parameters
mpo (tnpy.operators.MatrixProductOperator) – The matrix product operator.
chi (int) – The truncation dimensions.
offset (float) –
Examples
The tSDRG algorithm can be launched by calling
run()method.>>> tsdrg = TreeTensorNetworkSDRG(mpo, chi=32) >>> tsdrg.run()
After executing
run(), one can access the binary tensor treeTensorTreethrough the attributetree. For measurements, please refer tomeasurementsorTreeTensorNetworkMeasurements.
Methods
__init__(mpo, chi, offset)The tree tensor network version of strong disorder renormalization group algorithm.
block_eigen_solver(locus)Solve the 2-site Hamiltonian with
chilowest eigen-pairs.block_hamiltonian(locus)Construct the 2-site Hamiltonian from coarse-graining MPO.
run()Start the algorithm.
spectrum_projector(locus, evecs)Coarse-grain the MPO with given evecs which is used to form a projector.
truncation_gap(evals)Return the gap upon
chieigenvalues kept.Attributes
chiThe input bond dimensions.
evalsThe renormalized eigenvalues, with length
chi.measurementsCall available measurements in
TreeTensorNetworkMeasurements.mpoThe input matrix product operator.
n_sitesNumber of sites, i.e. the system size.
treeThe tree.
- __init__(mpo, chi, offset)[source]#
The tree tensor network version of strong disorder renormalization group algorithm.
- Parameters
mpo (tnpy.operators.MatrixProductOperator) – The matrix product operator.
chi (int) – The truncation dimensions.
offset (float) –
Examples
The tSDRG algorithm can be launched by calling
run()method.>>> tsdrg = TreeTensorNetworkSDRG(mpo, chi=32) >>> tsdrg.run()
After executing
run(), one can access the binary tensor treeTensorTreethrough the attributetree. For measurements, please refer tomeasurementsorTreeTensorNetworkMeasurements.
- property offset: float#
- block_eigen_solver(locus)[source]#
Solve the 2-site Hamiltonian with
chilowest eigen-pairs.- Parameters
locus (int) – The site in coarse-grained system during the RG process.
- Returns
A tuple (
evals,evecs), whereevalsare the lowestchieigenvalues, andevecsare the corresponding eigenvectors.- Return type
Tuple[numpy.ndarray, numpy.ndarray]