tnpy.linalg
3.1. tnpy.linalg#
Functions
|
|
|
|
|
|
|
|
- tnpy.linalg.svd(matrix, cutoff)[source]#
- Parameters
matrix (numpy.ndarray) – Input Matrix.
cutoff (int) – Truncation dimensions.
- Return type
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
Returns:
- tnpy.linalg.qr(matrix, cutoff)[source]#
- Parameters
matrix (numpy.ndarray) – Input Matrix.
cutoff (int) – Truncation dimensions.
- Return type
Tuple[numpy.ndarray, numpy.ndarray]
Returns:
- tnpy.linalg.eigh(matrix, k=1, backend='numpy', **kwargs)[source]#
- Parameters
matrix (numpy.ndarray) – Hermitian or real symmetric matrices whose eigenvalues and eigenvectors are to be computed.
k (int) – The number of eigenpairs to be computed.
backend (str) – (‘numpy’ or ‘scipy’).
**kwargs – Keyword arguments for scipy solver.
- Return type
Tuple[float | numpy.ndarray, numpy.ndarray]
Returns:
- tnpy.linalg.eigshmv(linear_operator, v0, k=1, which='SA', tol=0, **kwargs)[source]#
- Parameters
linear_operator (scipy.sparse.linalg._interface.LinearOperator) –
v0 (numpy.ndarray) – Initial guesses to the eigenvectors.
k (int) – The number of eigenpairs to be computed.
which (str) – Which k eigenvectors and eigenvalues to find.
tol (float) – Tolerance for eigenpairs (stopping criterion). The default value is sqrt of machine precision.
**kwargs – Keyword arguments for primme solver.
- Return type
Tuple[float | numpy.ndarray, numpy.ndarray]
Returns: