mbl.experiment.random_heisenberg
2.2. mbl.experiment.random_heisenberg#
Classes
|
Run an exact diagonalization experiment against the random Heisenberg model. |
|
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the random Heisenberg model with spectral folding, |
|
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the random Heisenberg model. |
- class mbl.experiment.random_heisenberg.RandomHeisenbergED(n, h, seed=None, penalty=0, s_target=0, offset=0)[source]#
Bases:
mbl.experiment.algorithm.EDExperiment
Run an exact diagonalization experiment against the random Heisenberg model.
- Parameters
n (int) – System size.
h (float) – Disorder strength.
seed (int) – Random seed used to initialize the pseudo-random number generator. If not given (None), current time will be used as the seed.
penalty (float) – Penalty strength (or Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
offset (float) – An overall shift to the spectrum.
- __init__(n, h, seed=None, penalty=0, s_target=0, offset=0)[source]#
Run an exact diagonalization experiment against the random Heisenberg model.
- Parameters
n (int) – System size.
h (float) – Disorder strength.
seed (Optional[int]) – Random seed used to initialize the pseudo-random number generator. If not given (None), current time will be used as the seed.
penalty (float) – Penalty strength (or Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
offset (float) – An overall shift to the spectrum.
- compute_df()[source]#
Summarize the experiment with these physical quantities,
Energies
Total \(S^z\)
The edge entropy
The bi-partition entropy
- Returns
A dataframe containing input parameters and the physical quantities.
- Raises
pandera.errors.SchemaError – If data is inconsistent with the schema,
mbl.schema.RandomHeisenbergEDSchema
.- Return type
- class mbl.experiment.random_heisenberg.RandomHeisenbergTSDRG(n, h, chi, seed=None, penalty=0, s_target=0, offset=0, overall_const=1, method='min')[source]#
Bases:
mbl.experiment.algorithm.TSDRGExperiment
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the random Heisenberg model.
- Parameters
n (int) – System size.
h (float) – Disorder strength.
chi (int) – The bond dimensions.
seed (int) – Random seed used to initialize the pseudo-random number generator. If not given (None), current time will be used as the seed.
penalty (float) – Penalty strength (or Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
offset (float) – An overall shift to the spectrum.
overall_const (float) – An overall constant multiplied on the spectrum.
method (str) – Keep the highest or lowest
chi
eigenvectors in projection.
- __init__(n, h, chi, seed=None, penalty=0, s_target=0, offset=0, overall_const=1, method='min')[source]#
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the random Heisenberg model.
- Parameters
n (int) – System size.
h (float) – Disorder strength.
chi (int) – The bond dimensions.
seed (Optional[int]) – Random seed used to initialize the pseudo-random number generator. If not given (None), current time will be used as the seed.
penalty (float) – Penalty strength (or Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
offset (float) – An overall shift to the spectrum.
overall_const (float) – An overall constant multiplied on the spectrum.
method (str) – Keep the highest or lowest
chi
eigenvectors in projection.
- compute_df()[source]#
Summarize the experiment with these physical quantities,
Energies
Energy variance
Total \(S^z\)
The edge entropy
- Returns
A dataframe containing input parameters and the physical quantities.
- Raises
pandera.errors.SchemaError – If data is inconsistent with the schema,
mbl.schema.RandomHeisenbergTSDRGSchema
.- Return type
- class mbl.experiment.random_heisenberg.RandomHeisenbergFoldingTSDRG(n, h, chi, seed=None, penalty=0, s_target=0, max_en=nan, min_en=nan, relative_offset=0, method='min')[source]#
Bases:
mbl.experiment.algorithm.TSDRGExperiment
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the random Heisenberg model with spectral folding,
\[H \rightarrow (H - \epsilon)^2,\]where \(\epsilon = E_{min} + (E_{max} - E_{min}) \times \epsilon_{rel}\)
- Parameters
n (int) – System size.
h (float) – Disorder strength.
chi (int) – The bond dimensions.
seed (int) – Random seed used to initialize the pseudo-random number generator. If not given (None), current time will be used as the seed.
penalty (float) – Penalty strength (or Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
max_en (float) – An estimated upper bound of the spectrum. Default
nan
for not performing spectral folding.min_en (float) – An estimated lower bound of the spectrum. Default
nan
for not performing spectral folding.relative_offset (float) – A relative shift to the spectrum with respect to
max_en
andmin_en
.method (str) – Keep the highest or lowest
chi
eigenvectors in projection.
- __init__(n, h, chi, seed=None, penalty=0, s_target=0, max_en=nan, min_en=nan, relative_offset=0, method='min')[source]#
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the random Heisenberg model with spectral folding,
\[H \rightarrow (H - \epsilon)^2,\]where \(\epsilon = E_{min} + (E_{max} - E_{min}) \times \epsilon_{rel}\)
- Parameters
n (int) – System size.
h (float) – Disorder strength.
chi (int) – The bond dimensions.
seed (Optional[int]) – Random seed used to initialize the pseudo-random number generator. If not given (None), current time will be used as the seed.
penalty (float) – Penalty strength (or Lagrangian multiplier).
s_target (int) – The targeting total Sz charge sector.
max_en (float) – An estimated upper bound of the spectrum. Default
nan
for not performing spectral folding.min_en (float) – An estimated lower bound of the spectrum. Default
nan
for not performing spectral folding.relative_offset (float) – A relative shift to the spectrum with respect to
max_en
andmin_en
.method (str) – Keep the highest or lowest
chi
eigenvectors in projection.
- compute_df()[source]#
Summarize the experiment with these physical quantities,
Energies
Energy variance
Total \(S^z\)
The edge entropy
- Returns
A dataframe containing input parameters and the physical quantities.
- Raises
pandera.errors.SchemaError – If data is inconsistent with the schema,
mbl.schema.RandomHeisenbergFoldingTSDRGSchema
.- Return type