mbl.analysis.level_statistic.LevelStatistic
4.2. mbl.analysis.level_statistic.LevelStatistic#
- class mbl.analysis.level_statistic.LevelStatistic(raw_df=None)[source]#
Bases:
object
Analyze the level statistic on \(K\)-rounds of experiment (disorder trials), with each having \(N\) levels,
\[\langle r \rangle = \mathbb{E}_{k, n}\, r_n^{(k)},\]where \(r\) is the gap ratio parameter defined in
gap_ratio()
.Note that the order of taking average does matter when constraining in certain charge sector only, instead of the full spectrum.
- Parameters
raw_df (pandas.core.frame.DataFrame) – The raw data. If provided, local queries will be executed. Default None to extract data from AWS Athena.
Examples
>>> agent = LevelStatistic() >>> df = agent.fetch_gap_ratio()
- __init__(raw_df=None)[source]#
Analyze the level statistic on \(K\)-rounds of experiment (disorder trials), with each having \(N\) levels,
\[\langle r \rangle = \mathbb{E}_{k, n}\, r_n^{(k)},\]where \(r\) is the gap ratio parameter defined in
gap_ratio()
.Note that the order of taking average does matter when constraining in certain charge sector only, instead of the full spectrum.
- Parameters
raw_df (Optional[pandas.core.frame.DataFrame]) – The raw data. If provided, local queries will be executed. Default None to extract data from AWS Athena.
Examples
>>> agent = LevelStatistic() >>> df = agent.fetch_gap_ratio()
Methods
__init__
([raw_df])Analyze the level statistic on \(K\)-rounds of experiment (disorder trials), with each having \(N\) levels,
athena_query
(n, h[, penalty, s_target, ...])averaged_gap_ratio
(df[, order])disorder_average
(df)extract_gap
(df)Feed in the DataFrame obtained through either
local_query()
orathena_query()
, then compute the energy gap and the gap ratio parameter.fetch_gap_ratio
(n, h[, chi, total_sz, ...])gap_ratio
(gap)For k-th disorder trial, the gap ratio is defined as
level_average
(df)local_query
(n, h[, penalty, s_target, seed, ...])query_elements
(n, h[, penalty, s_target, ...])Attributes
- class Metadata(database: str = 'random_heisenberg', ed_table: str = 'ed', tsdrg_table: str = 'folding_tsdrg')[source]#
Bases:
object
- Parameters
database (str) –
ed_table (str) –
tsdrg_table (str) –
- Return type
None
- database: str = 'random_heisenberg'#
- ed_table: str = 'ed'#
- tsdrg_table: str = 'folding_tsdrg'#
- __init__(database='random_heisenberg', ed_table='ed', tsdrg_table='folding_tsdrg')#
- Parameters
database (str) –
ed_table (str) –
tsdrg_table (str) –
- Return type
None
- __init__(raw_df=None)[source]#
Analyze the level statistic on \(K\)-rounds of experiment (disorder trials), with each having \(N\) levels,
\[\langle r \rangle = \mathbb{E}_{k, n}\, r_n^{(k)},\]where \(r\) is the gap ratio parameter defined in
gap_ratio()
.Note that the order of taking average does matter when constraining in certain charge sector only, instead of the full spectrum.
- Parameters
raw_df (Optional[pandas.core.frame.DataFrame]) – The raw data. If provided, local queries will be executed. Default None to extract data from AWS Athena.
Examples
>>> agent = LevelStatistic() >>> df = agent.fetch_gap_ratio()
- property raw_df: pandas.core.frame.DataFrame#
- classmethod query_elements(n, h, penalty=0.0, s_target=0, seed=None, chi=None, relative_offset=None, total_sz=None, tol=1e-12)[source]#
- Parameters
n (int) –
h (float) –
penalty (float) –
s_target (int) –
seed (Optional[int]) –
chi (Optional[int]) –
relative_offset (Optional[float]) –
total_sz (Optional[int]) –
tol (float) –
- Return type
List[str]
- local_query(n, h, penalty=0.0, s_target=0, seed=None, chi=None, relative_offset=None, total_sz=None, tol=1e-12)[source]#
- Parameters
n (int) –
h (float) –
penalty (float) –
s_target (int) –
seed (int) –
chi (int) –
relative_offset (float) –
total_sz (int) –
tol (float) –
- Return type
- classmethod athena_query(n, h, penalty=0.0, s_target=0, seed=None, chi=None, relative_offset=None, total_sz=None, tol=1e-12, **kwargs)[source]#
- Parameters
n (int) –
h (float) –
penalty (float) –
s_target (int) –
seed (int) –
chi (int) –
relative_offset (float) –
total_sz (int) –
tol (float) –
- Return type
- classmethod extract_gap(df)[source]#
Feed in the DataFrame obtained through either
local_query()
orathena_query()
, then compute the energy gap and the gap ratio parameter.- Parameters
df (modin.pandas.dataframe.DataFrame) –
- Return type
modin.pandas.dataframe.DataFrame
Returns:
- static gap_ratio(gap)[source]#
For k-th disorder trial, the gap ratio is defined as
\[r_n^{(k)} = \min\left( \frac{\delta_n}{\delta_{n+1}}, \frac{\delta_{n+1}}{\delta_n} \right),\]where \(\delta_n = E_{n+1} - E_n\) is the n-th energy gap.
- Parameters
gap (numpy.ndarray) –
- Return type
Returns:
- classmethod level_average(df)[source]#
- Parameters
df (modin.pandas.dataframe.DataFrame) –
- Return type
modin.pandas.series.Series
- classmethod disorder_average(df)[source]#
- Parameters
df (modin.pandas.dataframe.DataFrame) –
- Return type
modin.pandas.series.Series
- classmethod averaged_gap_ratio(df, order=AverageOrder.LEVEL_FIRST)[source]#
- Parameters
df (modin.pandas.dataframe.DataFrame) –
- Return type
float