mbl.experiment.algorithm
2.1. mbl.experiment.algorithm#
Classes
|
Run an exact diagonalization experiment against the |
|
Abstractive class for running algorithm against the 1-dimensional model. |
|
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the |
- class mbl.experiment.algorithm.Experiment1D(model)[source]#
Bases:
abc.ABC
Abstractive class for running algorithm against the 1-dimensional model. One should inherit this class and implement
Experiment1D._mpo_run_method()
andExperiment1D.compute_df()
.- Parameters
model (tnpy.model.model_1d.Model1D) – An 1d model.
- __init__(model)[source]#
Abstractive class for running algorithm against the 1-dimensional model. One should inherit this class and implement
Experiment1D._mpo_run_method()
andExperiment1D.compute_df()
.- Parameters
model (tnpy.model.model_1d.Model1D) – An 1d model.
- property model: tnpy.model.model_1d.Model1D#
- class mbl.experiment.algorithm.EDExperiment(model)[source]#
Bases:
mbl.experiment.algorithm.Experiment1D
Run an exact diagonalization experiment against the
model
.- Parameters
model (tnpy.model.model_1d.Model1D) – An 1d model.
- __init__(model)[source]#
Run an exact diagonalization experiment against the
model
.- Parameters
model (tnpy.model.model_1d.Model1D) – An 1d model.
- property ed: tnpy.exact_diagonalization.ExactDiagonalization#
A reference to the exact diagonalization solver.
- property evals: numpy.ndarray#
Eigenvalues in ascending order.
- property total_sz: numpy.ndarray#
The total \(S^z\) for every eigenvectors.
- Returns
An array in the order same as the eigenvalues.
- entanglement_entropy(site)[source]#
Compute the von Neumann entanglement entropy for every eigenvectors.
- Parameters
site (int) – The site to which the bi-partition is taken.
- Returns
An array in the order same as the eigenvalues.
- Return type
- class mbl.experiment.algorithm.TSDRGExperiment(model, chi, method='min')[source]#
Bases:
mbl.experiment.algorithm.Experiment1D
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the
model
.- Parameters
model (tnpy.model.model_1d.Model1D) – An 1d model.
chi (int) – The bond dimensions.
method (str) – Keep the highest or lowest
chi
eigenvectors in projection.
- __init__(model, chi, method='min')[source]#
Run a Tree Tensor Strong-Disorder Renormalization Group (tSDRG) experiment against the
model
.- Parameters
model (tnpy.model.model_1d.Model1D) – An 1d model.
chi (int) – The bond dimensions.
method (str) – Keep the highest or lowest
chi
eigenvectors in projection.
- property tsdrg: tnpy.tsdrg.TreeTensorNetworkSDRG#
A reference to the TSDRG solver.
- property evals: numpy.ndarray#
Eigenvalues in ascending order.
- property variance: numpy.ndarray#
Energy variance.
- Returns
An array in the order same as the eigenvalues.
- property total_sz: numpy.ndarray#
The total \(S^z\) for every eigenvectors.
- Returns
An array in the order same as the eigenvalues.
- property edge_entropy: numpy.ndarray#
Compute the von Neumann entanglement entropy for every eigenvectors, where the bi-partition is taken on the 1st bond. That is, part \(A\) contains only one site, leaving the rest of sites in part \(B\).
- Returns
An array in the order same as the eigenvalues.
- save_tree(filename)[source]#
Serialize the
TensorTree
as a pickle binary.- Parameters
filename (str) –
References