Skip to main content
Ctrl+K

qlinks 0.1.0rc1 documentation

  • GitHub

Contents:

  • 1. Lattice
    • 1.1. qlinks.lattice.component
    • 1.2. qlinks.lattice.square_lattice
  • 2. Symmetry
    • 2.1. qlinks.symmetry.gauss_law
    • 2.2. qlinks.symmetry.translation
  • 3. Solver
    • 3.1. qlinks.solver.deep_first_search
  • 4. Visualizer
  • Repository
  • Suggest edit
  • Open issue

Welcome to qlinks’s documentation!

Contents

  • Welcome to qlinks’s documentation!
  • qlinks: Quantum link model
    • Installation
      • 1. Install the package from PyPI:
      • 2. Install the package from source:
      • 3. Docker
    • Getting started
      • 1. Enumeration of the Basis
      • 2. Easy construction of the Hamiltonian
    • License
    • API references
    • Indices and tables

Welcome to qlinks’s documentation!#

qlinks: Quantum link model#

alt text


PyPI version Downloads codecov Join the chat at https://gitter.im/tanlin2013/qlinks Code style: black Imports: isort License Docker build Test Status Lint Status

Documentation |


Quantum link model

Installation#

1. Install the package from PyPI:#

pip install qlinks

2. Install the package from source:#

poetry install --all-extras

3. Docker#

docker pull tanlin2013/qlinks:main

Getting started#

1. Enumeration of the Basis#

alt text

We implement the depth-first search (backtracking) algorithm to enumerate all basis satisfying the Gauss law.

from qlinks.symmetry.gauss_law import GaussLaw

lattice_shape = (4, 2)
gauss_law = GaussLaw.from_staggered_charge_distri(*lattice_shape, flux_sector=(0, 0))
basis = gauss_law.solve()

2. Easy construction of the Hamiltonian#

from qlinks.model.quantum_link_model import QuantumLinkModel

coup_j, coup_rk = (1.0, 1.0)
model = QuantumLinkModel(coup_j, coup_rk, lattice_shape, basis)
ham = model.hamiltonian.todense()

The Hamiltonian is a scipy sparse matrix, but we can convert it to a dense matrix for small systems.

License#

© Tan Tao-Lin, 2023. Licensed under a MIT license.

API references#

Contents:

  • 1. Lattice
    • 1.1. qlinks.lattice.component
    • 1.2. qlinks.lattice.square_lattice
  • 2. Symmetry
    • 2.1. qlinks.symmetry.gauss_law
    • 2.2. qlinks.symmetry.translation
  • 3. Solver
    • 3.1. qlinks.solver.deep_first_search
  • 4. Visualizer

Indices and tables#

  • Index

  • Module Index

  • Search Page

next

1. Lattice

Contents
  • Welcome to qlinks’s documentation!
  • qlinks: Quantum link model
    • Installation
      • 1. Install the package from PyPI:
      • 2. Install the package from source:
      • 3. Docker
    • Getting started
      • 1. Enumeration of the Basis
      • 2. Easy construction of the Hamiltonian
    • License
    • API references
    • Indices and tables

By Tan Tao-Lin

© Copyright 2023, Tan Tao-Lin.